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 The purpose of the present section is to analyse the effect of porous medium and uniform 

magnetic field applied perpendicularly to the unsteady flow of dusty incompressible Oldroyd                 

visco-elastic liquid of second order under the influence of transient pressure gradient through a long 

right circular cylinder. This problem has been solved in the generalized visco-elastic model and the 

velocity field for visco-elastic liquid and the dust particles have been derived analytically in the 

closed form. The particular cases corresponding to Oldroyd, Maxwell, Rivlin-Ericksen dusty liquid 

and ordinary viscous dusty fluid models are derived for velocity field. There is also the case when 

uniform magnetic field is withdrawn has been deduced. 

 

INTRODUCTION 

 The interest in problems of mechanics of system with more than one phase has 

developed rapidly in the past few years. The situations, which occur frequently, are 

concerned with the flow of a liquid or gas which contains uniformly distribution of solid 

particles. Such situations arise, for instance the movement of dust laden air, in fluidization, in 

the use of dust in gas cooling system, in hydro cyclones, in problems of pollution, in tidal 

waves etc. The mathematical description of such diverse systems has been discussed very 

widely.  Model equations describing the motion of such mixed system have been given by 

Saffman11.  

 There is another class of flow problems which concerns with the study of the flow of 

the dusty visco-elastic liquids such as latex particles in emulsion paints, reinforcing particles 

in polymer melts and rock crystals in molten lava etc. However, the studies of this class of 

problems and rheological aspects of such flow have not received much attention; although 

this has become bearing on the problems of petroleum and chemical engineering interest. The 
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unsteady flow of dusty visco-elastic liquids of various kinds through channels of various 

cross-section with time dependent pressure gradient have been studied by many researchers 

such as : Dube and Srivastava4; Bagchi and Maiti2; Kumar and Singh7 ; Garg, Shrivastava 

and Singh5; Johri  and Gupta6; Kundu and Sengupta8;  Dass3; Singh, Gupta and Varshney13; 

Varshney and Singh15; Singh14; Agrawal, Agrawal and Varshney1; Singh and Varshney12; 

Prasad, Nagaich and Varshney10;  Mishra, Kumar and Singh9; Tripathi, Sharma and Singh16 

etc. have discussed the effect of magnetic field on the flow of dusty incompressible visco-

elastic second order Oldroyd fluid through a rectangular channel. 

 In the present paper, there is an aim to discuss the unsteady flow of second order 

Oldroyd visco-elastic liquid through porous medium in a long right circular cylinder under 

the influence of uniform magnetic field applied perpendicularly to the flow of visco-elastic 

liquid with transient pressure gradient. The analytical solutions for velocity of visco-elastic 

liquid and the dust particles are obtained in eligent form. The particular cases for dusty visco-

elastic Oldroyd (1958) model liquid, dusty visco-elastic Maxwell liquid, dusty Rivlin-

Ericksen liquid, dusty viscous liquid have been derived. There is also the case when the 

magnetic field is withdrawn which has been deduced.  

BASIC THEORY FOR SECOND ORDER OLDROYD VISCO-ELASTIC LIQUID 

 For slow motion, the rheological equations for second order 

 Oldroyd visco-elastic liquid are:        

 

                  𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗
′  

               (1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝜏𝑖𝑗

′ = 2𝜇 (1 + 𝜇1

𝜕

𝜕𝑡
+ 𝜇2

𝜕2

𝜕𝑡2
) 𝑒𝑖𝑗    … (1) 

                  𝑒𝑖𝑗 =
1

2
(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) 

 

          where 𝜏𝑖𝑗  is the stress tensor, 𝜏𝑖𝑗
′  the deviatoric stress tensor, 𝑒𝑖𝑗 the rate of strain tensor 

, p the fluid pressure , 𝜆1 the stress relaxation time parameter, 𝜇1 the strain rate retardation 

time parameter, 𝜆2 the  material constant , 𝜇2 the material constant, 𝛿𝑖𝑗 the metric tensor, 𝜇 

the coefficient of viscosity and vi is the velocity components. 
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FORMULATION OF THE PROBLEM 

 Following assumptions have been considered for the equations of motion; 

1. The interaction between particles themselves has not been considered. 

2. Throughout the motion, density of the dust particles is taken to be constant. 

3. The temperature within particles is considered as uniform. 

4. The boundary force is neglected. 

5. The dust particles are non-conducting and uniform spherical in small size. 

6. Mass transfer, radiation and chemical reaction between particles and liquid are not 

consideration. 

7. The effects of the induced magnetic field and the electric field produced by the 

motion of selectrically conducting visco-elastic liquid are negligible. 

 

 

 

 

 

                   

 

 

 

 

Fig:  Schematic diagram of dusty visco-elastic fluid flow in a right circular cylinder. 

Let P(𝑟, 𝜃, 𝑧) be the cylindrical polar coordinates in a right circular cylinder of radius 

a and if (𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧) and (𝑣𝑟 , 𝑣𝜃, 𝑣𝑧) are the velocity components of the liquid and dust 

particles respectively at point P. Consider the flow of dusty visco-elastic liquid through a 

long right circular cylinder of radius a in the direction of z-axis i.e. along the axis of the 

channel, therefore 

                 𝑢𝑟 = 0,   𝑢𝜃 = 0,   𝑢𝑧 = 𝑢𝑧(𝑟, 𝑡)

                 𝑣𝑟 = 0,   𝑣𝜃 = 0,   𝑣𝑧 = 𝑣𝑧(𝑟, 𝑡)
}                                             … (2) 
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 Following Saffman (1962), the equations of motion for a dusty second order visco-

elastic Oldroyd liquid through porous medium under the influence of transverse magnetic 

field are: 

 

(1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
)

𝜕𝑢𝑧

𝜕𝑡
= −

1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
)

𝜕𝑝

𝜕𝑧
 

        +𝜐 (1 + 𝜇1

𝜕

𝜕𝑡
+ 𝜇2

𝜕2

𝜕𝑡2
) (

𝜕2𝑢𝑧

𝜕𝑟2
+

1

𝑟

𝜕𝑢𝑧

𝜕𝑟
) 

       − (
𝜎𝐵0

2

𝜌
+

1

𝐾
) (1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑢𝑧 +

𝑘𝑁0

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) (𝑣𝑧 − 𝑢𝑧) 

                                                                                                                               … (3) 

                  𝑚
𝜕𝑣𝑧

𝜕𝑡
= 𝑘(𝑢𝑧 − 𝑣𝑧)                                                                  … (4) 

where 𝜌 is the density of liquid, m the mass of particle, k the stokes resistance coefficient, K 

the permeability coefficient, 𝑁0 the number of density of particles, 𝜎 the conductivity of the 

liquid and 𝐵0 is the intensity of magnetic field. 

 The boundary conditions for liquid and dust particles are: 

                 𝑢𝑧 = 0,            𝑣𝑧 = 0,              at 𝑟 = 𝑎
                 𝑢𝑧 = finite, 𝑣𝑧 = finite,          at 𝑟 = 0

}                                  … (5) 

 Introducing the following non-dimensional quantities: 

𝑢∗ =
𝑎

𝜈
𝑢𝑧  ,   𝑣∗ =

𝑎

𝜈
𝑣𝑧 ,      𝑝

∗ =
𝑎2

𝜌𝜈2
𝑝 ,   𝑡∗ =

𝜈

𝑎2
𝑡 ,   𝑟∗ =

𝑟

𝑎
  , 

            𝑧∗ =
𝑧

𝑎
 ,   𝜆1

∗ =
𝜈

𝑎2
𝜆1 ,   𝜇1

∗ =
𝜈

𝑎2
𝜇1 ,   𝜆2

∗ =
𝜈2

𝑎4
𝜆2 ,   𝜇2

∗ =
𝜈2

𝑎4
𝜇2 

in the equations (3), (4) and boundary conditions given by equation (5), it is found (after 

dropping the stars) 

(1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
)

𝜕𝑢

𝜕𝑡
= − (1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
)

𝜕𝑝

𝜕𝑧
 

      + (1 + 𝜇1

𝜕

𝜕𝑡
+ 𝜇2

𝜕2

𝜕𝑡2
) (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
) − ( 𝐻2 +

1

𝐾
) (1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑢 

      +𝛽 (1 + 𝜆1

𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) (𝑣 − 𝑢)                                                     … (6) 

                   
𝜕𝑣

𝜕𝑡
 =

1

𝛾
(𝑢 − 𝑣)                                                                        … (7)  



 
Dr. Anil Tripathi 

 (Pg. 12726-12732) 

 

 12730 

 

Copyright © 2019, Scholarly Research Journal for Interdisciplinary Studies 

 
 

and boundary conditions are: 

                 𝑢 = 0,               𝑣 = 0                     at 𝑟 = 1
                 𝑢 = finite,       𝑣 = finite              at 𝑟 = 0

}                            … (8)where 

                  𝛽 =
𝑓0

𝛾
=

𝑁0𝑘𝑎2

𝜌𝜈
, 𝑓0 =

𝑚𝑁0

𝜌
, 𝛾 =

𝑚𝜈

𝑘𝑎2
  and 

                  𝐻 = 𝐵0𝑎√𝜎/𝜇     (Hartmann number)   

 Since a transient pressure gradient −𝑃𝑒−𝜔𝑡 varying with time t is applied to the dusty 

visco-elastic Oldroyd liquid of second order, therefore it may choose the solution of 

equations (4) and (5) as  

               
 𝑢 = 𝑈(𝑟)𝑒−𝜔𝑡

   𝑣 = 𝑉(𝑟)𝑒 −𝜔𝑡}                                                                         … (9) 

 

The corresponding boundary conditions are: 

                   𝑈 = 0, 𝑉 = 0,                                  at 𝑟 = 1
                   𝑈 = finite, 𝑉 = finite,                   at 𝑟 = 0

}                        … (10) 

Putting u and v in equation (7), it is obtained 

                  𝑉 =
𝑈

1 − 𝛾𝜔
                                                                               … (11) 

From equation (6) with the help of equations (9) and (11), it is obtained 

                  
𝑑2𝑈

𝑑𝑟2
+

1

𝑟

𝑑𝑈

𝑑𝑅
+ 𝑀2𝑈 = 𝐶                                                       … (12) 

where 

𝑀 = [
{𝜔(1 − 𝛾𝜔 + 𝛽𝛾) − ( 𝐻2 +

1
𝐾) (1 − 𝛾𝜔)} (1 − 𝜆1𝜔 + 𝜆2𝜔2)

(1 − 𝛾𝜔)(1 − 𝜇1𝜔 + 𝜇2𝜔2)
]

1
2

      … (13) 

and                      

                  𝐶 = (
1 − 𝜆1𝜔 + 𝜆2𝜔2

1 − 𝜇1𝜔 + 𝜇2𝜔2
) 𝑃                                                    … (14) 

 Now, by solving equation (12) with the help of boundary conditions given by 

equation (10), it is found 

                  𝑈(𝑟) =
𝐶

𝑀2
(

𝐽0(𝑀𝑟)

𝐽0(𝑀)
− 1)                                                     … (15) 

where 𝐽0 is the Bessel’s function of zeroth order. 
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 From equations (9) and (15), the velocity of second order Oldroyd visco-elastic liquid 

is obtained 

                  𝑢 =
𝐶

𝑀2
(

𝐽0(𝑀𝑟)

𝐽0(𝑀)
− 1) 𝑒−𝜔𝑡                                                  … (16) 

and from equations (9), (11) and (15),  the velocity of dust particles is obtained 

                  𝑣 =
𝐶

(1 − 𝛾𝜔)𝑀2
(

𝐽0(𝑀𝑟)

𝐽0(𝑀)
− 1) 𝑒−𝜔𝑡                                 … (17) 

PARTICULAR CASES 

CASE I: If material constants  𝜆2 = 0  and 𝜇2 = 0   

 Then from equations (16) and (17), there are obtained velocities of Oldroyd visco-

elastic liquid and the dust particles respectively, where M will be 

𝑀 = [
{𝜔(1 − 𝛾𝜔 + 𝛽𝛾) − ( 𝐻2 +

1
𝐾) (1 − 𝛾𝜔)} (1 − 𝜆1𝜔)

(1 − 𝛾𝜔)(1 − 𝜇1𝜔)
]

1
2

                     … (18) 

CASE II: If 𝜇1 = 0, 𝜇2 = 0  

  Then from equations (16) and (17) there are obtained velocities of Maxwell visco-

elastic liquid and the dust particles respectively, where M will be 

𝑀 = [
{𝜔(1 − 𝛾𝜔 + 𝛽𝛾) − ( 𝐻2 +

1
𝐾

) (1 − 𝛾𝜔)} (1 − 𝜆1𝜔 + 𝜆2𝜔2)

(1 − 𝛾𝜔)
]

1
2

      … (19) 

 

Case III: If 𝜆1 = 0, 𝜆2 = 0, 𝜇2 = 0 

 Then from equations (16) and (17), there are obtained velocities of Rivlin-Ericksen 

visco-elastic liquid and the dust particles, where M will be 

                  𝑀 = [
{𝜔(1 − 𝛾𝜔 + 𝛽𝛾) − ( 𝐻2 +

1
𝐾) (1 − 𝛾𝜔)}

(1 − 𝛾𝜔)(1 − 𝜇1𝜔)
]

1
2

                      … (20) 

Case IV: If  𝜆1 = 0,  𝜆2 = 0, 𝜇1 = 0, 𝜇2 = 0 

 Then from equations (16) and (17), there are obtained velocities of viscous liquid and 

the dust particles respectively under the influence of magnetic field, where M will be 
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                  𝑀 = [
{𝜔(1 − 𝛾𝜔 + 𝛽𝛾) − ( 𝐻2 +

1
𝐾) (1 − 𝛾𝜔)}

(1 − 𝛾𝜔)
]

1
2

                      … (21) 

DEDUCTION 

 If magnetic field is withdrawn i.e. 𝐵0 = 0, then all the above results in absence of 

magnetic field can be obtained with slight change of notation. 
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